
Procedural Planet Creation - TNM084

Jonathan Bosson

January 2016

Figure 1: Planet generated through Procedural Methods

1



1 Introduction

Using procedural methods is still an unorthodox method to render an image.
Still it is a very powerful tool to generate random looking environments with a
lot of detail. It’s also something that quite easily can be done in real time and
simple to make minor changes very quickly. This report will go through the
methods used to create an arbitrary planet after the user’s desired look.

2 Method

This has been an individual project developed in JavaScript, WebGL as well as
Requirejs as module loader for GLSL. A simplex noise function has been used
created by Ian McEwan, Ashima Arts.

3 Building the Planet

So how does one start making a planet? Most of the times the solution is simpler
than one would think. WebGL comes with a handy package to deal with 3D
graphics in the form of scene-, camera- and 3D-objects. Once the scene graph
has been set up a sphere can simply be added. The goal here is to displace the
vertices in the vertex shader to create mountains and valleys on the planet. To
do this with high detail it is important to create the sphere with a high amount
of segments. This is nothing to be afraid of, the GPU is more than capable to
handle the amount of vertex points required for the desired detail. To simulate
water level a secondary smaller sphere is created inside the planet. This ’water
planet’ will intersect the main planet to achieve an water level. It will also have
its own shaders in order to animate waves.

Once the displacement is done and the form of the planet is finished we need
to give it appropriate colors representing different types of environments. This
is done in the fragment shader. Colors of water, sand, forest, mountain and
snow has been implemented representing five different biome’s on the planet.

A simple GUI has been added in order to let the user interact with the
planet as well as change the look of it. To make this possible the functions
that generates the planet relies on a few variables the user can choose. The
user can choose a constant determining the height and frequency of the planet’s
mountains as well as at what height the different biomes should intersect.

4 Displacement in vertex shaders

Simplex noise(1) has been used to generate a random look to both the form and
colors of the planet. In the vertexshader a scalar value E is created representing
the elevation a vertex point is to be displaced. A and F in the equation below is
the altitude and frequency, two variables the user can change to receive desired
results. A higher frequency results in more frequent mountain tops and the

2



higher altitude the higher said mountains will reach. The P in the equation is
the point in the vertex points location in the 3D space.

E = A ∗ snoise(F ∗ P ) (1)

In order to generate smoother changes in the noise it is customary to sum
up several results of noise that cooperate with each other. The trick to this
is to let each noise function be a child to the first ’parent noise’. For each
time another noise function is added the altitude needs to be halfed and the
frequency doubled. Doing this means we let each noise function build on the
last one. This results in a smooth interpolation in the noise with a lot of detail.

In the water planet has time been used as a variable to a small bump-like
displacement. This produces an animation of waves on the ocean, which changes
with time.

5 Determining color in fragment shaders

On the planet there’s five different biomes, all of them with their own set of
color mixes. The snow biome is mostly white but has some graininess to it
to better represent real snow. The rock and forest biome both have graininess
and patches of the same color in another hue. This graininess is generated
through the same simplex noise as described above but on the color channels.
The patches through mixing two similar colors with a clamp value that varies.

Once all biome colors have been evaluated we need to determine where each
biome starts and finish. This is done through the input variables from the user.
By determining at what height two biomes should intersect an interpolation
between two colors is made with the help of GL function smoothstep and mix(2).

In both the water planet and parent planet’s fragment shader has a blinn
phong shading model been implemented to calculate the local illumination on
the object.

6 Results

The code can be downloaded or viewed at github here1 or live tested live on
Firefox here.2

1https://github.com/jonathanbosson/procPlanets
2http://jonathanbosson.github.io/procPlanets/planet/

3

https://github.com/jonathanbosson/procPlanets
http://jonathanbosson.github.io/procPlanets/planet/


Figure 2: Earth like planet

4



Figure 3: Surrealistic magma-planet

5



Figure 4: Waterplanet with spiky mountains

6



Figure 5: Earth like planet with light animation

7



References

[1] Stefan Gustavsson. Simplex Noise Demystified. 2005-03-22.
http://webstaff.itn.liu.se/~stegu/TNM084-2015/simplexnoise.

pdf

[2] Reference for the built-in functions of the OpenGL ES Shading Language.
http://www.shaderific.com/glsl-functions/

8

http://webstaff.itn.liu.se/~stegu/TNM084-2015/simplexnoise.pdf
http://webstaff.itn.liu.se/~stegu/TNM084-2015/simplexnoise.pdf
http://www.shaderific.com/glsl-functions/

	Introduction
	Method
	Building the Planet
	Displacement in vertex shaders
	Determining color in fragment shaders
	Results

