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Abstract

The paper discusses how to achieve smooth curves
and surfaces on models in computer graphics
through B-Splines and subdivision curves. We look
at the theory of Bézier curves and basis functions.
As well as how to use uniform cubic B-Splines and
Loop’s Subdivision algorithm to achieve smooth
curves.

1 Introduction

Subdivision curves and surfaces have been known
for a long time and are used in applied computer
graphics in numerous ways. Interaction with the
splines is easy since all operations only impact a
local area. At the same time the computation cost is
low since the order of the splines can be kept rela-
tively low. The numerical scheme is stable because
all computations are on stable bases. This paper
only focuses on the assumption of uniform basis
functions, which allows for a simpler analysis and
construction however it limits some of the geometric
properties.

2 Background

Bézier curves were developed in the late 50s as a
stable scheme to approximate parametric curves
by Paul de Casteljau. Later in the 60s an engineer
named Pierre Bézier designed car bodies using the
algorithms from where it bears its name. Bézier

curves can be seen as a sum of different coefficients
(c0, c1, etc) using the basis functions {(1− t), t}.

p1(t) = (1− t)c0 + tc1 , t ∈ [0, 1] (1)

p2(t) = (1− t)p0,1(t) + tp1,1(t) , t ∈ [0, 1]
= (1− t)2c0 + 2t(1− t)c1 + t2c2 , t ∈ [0, 1]

(2)
The simplest version, a linear Bézier curve with

points p0 and p1 is just a straight line (equivalent to
linear interpolation), equation given by 1. Quadratic
Bézier curves however takes the form of the path
traced by c0, c1 and c2 and is a combination of two
linear Bézier curves as seen in equation 2.

Looking at the basis functions, each coefficient
only supports the curve locally meaning that only a
few of the functions are non-zero. Given a function
with a set of points bi(t) can the function value be
generated by calculating the sum.

p(t) = ∑
i

cibi(t) (3)

The most commonly used B-Spline is the Uniform
Cubic B-Spline which is a cubic polynomial mean-
ing it will have three coefficients (also called control
points) that supports each point. Each control point
is approximated but can be manipulated to achieve
the desired curve.

Bd(t) =
∫

Bd−1(s)B0(t− s) ds (4)

B-Splines can be defined as the convolution of
the lower order B-Spline with the lowest coefficient,
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like equation 4. The order of the function is given
by the length of the intervals where both functions
are non-zero. As the current B-Spline is calculated
using the previous order is a recursive computation
required. Defining the B-Splines as convolutions
allows for a refinement equation, 5, which in turns
connects it to subdivision methods.

Bd(t) =
1
2d

d+1

∑
i=0

(
d + 1

i

)
Bd(2t− i) (5)

where the binomial is(
k
m

)
=

k!
m!(k−m)!

(6)

The refinement equation states that a B-Spline
of degree d is equal to a sum of translated (i) and
dilated (2t) copies of itself. The resulting refined
cubic B-Spline of order 3 will then be

B3(t) =
1
8
( 1B3(2t)
+ 4B3(2t− 1)
+ 6B3(2t− 2)
+ 4B3(2t− 3)
+ 1B3(2t− 4)
)

(7)

This is used in subdivision as we can express the
curve in B-Splines whose support is twice as dense
but half as wide as in equation 8.

p(t) = B(t)C = B(2t)SC (8)

The coefficients Ci are thus redefined as Ci+1 =
SCi. S is defined from equation 5 or directly as

s2i+k,i = sk =
1
2d

(
d + 1

k

)
(9)

where i is the row, k is the column, and d is the
degree. The subdivision will not yet work on the
boundary as it is a weighted average of coefficients
on both sides of current point. To solve this specific
rules to subdivision on the boundary are provided.
The normal solution to this is to define different
spline basis functions at the boundary such that the
sum still becomes 1. This is especially convenient

in situations where efficiency is important as it can
rescale the splines at the boundary with scalar val-
ues. The rules used in the lab was done in Lane and
Riesenfeld [2] ang gives following boundary values

s0,0 = 1
s1,0 = .5 s1,1 = .5
sn−1,m−1 = .5 sn−1,m = .5
sn,m = 1

(10)

As well as approximating a curve by succes-
sive applications of subdivision of the uniform
cubic splines can the same be done for meshes.
One method of this is through Loop’s subdivision
scheme [3]. It uses a straightforward approach and
is easy to implement with access to face and vertex
neighborhood. Each original triangle is divided into
four new triangles with the new vertex positions
as weighted averages of the original surrounding
ones in its 1-ring with β as weight, k is the valence
of current vertex point.

β =


3
8k

, k > 3

3
16

, k = 3

(11)

3 Results

Although this lab went through a lot of theory the
implementations were fairly straightforward and
easy to compute. Coding went through two seperate
files, UniformCubicSplineSubdivisionCurve and
LoopSubdivisionMesh.

3.1 UniformCubicSplineSubdivisionCurve

In UniformCubicSplineSubdivisionCurve the task
was to find the new coefficients C after a subdivision
had been made as well as make sure the subdivision
doesn’t break any of the boundary rules. The first
new coefficient is an average of the two original con-
trol points. The last control point is simply defined
as the last control point in the initial list of coeffi-
cients. All other coeffiecients were defined weight-
ing the three nearby control points and adding a
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Figure 1: Green Uniform Cubic B-Splines subdi-
vided curve converges towards the analytical red

new control point weighted by current and the next
control point. Or in more simpler terms

C′0 = 1
2 (C0 + C1)

C′j =
1
8 (Ci−1 + 6Ci + Ci+1)

C′j+1 = 1
2 (Ci + Ci+1)

C′n−1 = Cn−1

(12)

where C′ is twice as large as C and n is the size of
the coefficient list.

Figure 1 shows how the green curve created
through uniform cubic splines converges to the an-
alytical red curve as the subdivision scheme is run
more and more.

3.2 LoopSubdivisionMesh

The task in LoopSubdivisionMesh was to imple-
ment the weighting of the vertex rules of the new

Figure 2: A cow model in it’s original resolution

vertex points. For each vertex, the new position v
was defined as the a sum of all neighbouring vertex
positions weighted by the β from 11 as well as its
original position weighted by (1− kβ), where k is
the valence.

~v′ = (1− kβ)~v + ∑
i
~viβ (13)

The result can be seen in figure 2, 3 and 4 where
the detail of the cow model increases vastly. With
each subdivision is the resolution of the mesh
quadrupled.
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Figure 3: Model subdivided once with Loop’s algo-
rithm
b
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Figure 4: Model subdivided twice with Loop’s
algorithm
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