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Abstract

The paper discusses the theory and implementation
of a level set framework. A level set is a subset of an
implicit surface which can be deformed by solving
a number of partial differential equations (PDEs). The
implicit representation comes with the benefit of
easy changes in topology and formation. Stable
schemes on both hyperbolic and parabolic differentials
are discussed and will allow for erosion, dilation
and advection.

1 Introduction

Level sets are a subset of an implicit function and are
commonly used in conjunction with deformation
operations such as erosion, dilation or advection.
Since the implicit representation makes it easy to
define distance from the surface is this an efficient
approach. The method is defined as an interface as
a level set S of the level set function φ as

S = {~x ∈ <d : φ(~x) = h} (1)

where points are inside S when φ(vecx) < h and
outside when φ(vecx) > h.

2 Background

Furthermore, the normal of any level set of φ can be
defined as:

~n =
∇φ

|∇φ| (2)

To be able to manipulate the topology are the
equations of motion for the level set derived. This
is done by introducing time dependency to equa-
tion 1. There are multiple ways of achieving this,
one of which is called static level set formulation and
allows the isovalue vary over time as h(t). It will
describe how the level set of a function evolves as
the isovalue changes. The downfall of this method
is that the level set cannot intersect by its definition,
limiting the possible deformations. Another option
is to change the level set function itself over time,
such that S(t) = {~x ∈ <d : φ(~x, t) = h}. α(t) is ob-
served in order to derive the equations of motion for
S. Since α(t) is on and follows the movement of S, it
is known that φ(α(t), t) ≡ h. The time differentation
becomes:

∂φ

∂t
= −∇φ · dα

dt
(3a)

= −F |∇φ| (3b)

where F is referred to as the level set speed function:

F = n · dα

dt
=
∇φ

|∇φ| ·
dα

dt
(4)

This provides the user with all the means of ma-
nipulating the level set function to achieve a desired
motion on the surface S. The choice of h in the equa-
tion is arbitrary. However, using h = 0 has benefits
as it allows the definition of inside and outside the
surface to be done through simple sign convention.
Equation 3 is a continuous derivation on the level set
function, but to apply the theory in computer graph-
ics it is necessary to discretize both the temporal-
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and spatial domain. This can have a number of nu-
merical implications, depending on what PDE that
is used.

First off, the temporal discretization decides how
equation 3 will change over discrete timesteps ∆t.
Implicit schemes are stable regardless of timestep,
however they can be computationally heavy. De-
spite the constraints explicit methods introduce they
are often used to solve level sets due to their effi-
ciency. A simple explicit scheme is the forward Euler:

∂φ

∂t
≈ φn+1 − φn

∆t
(5)

where φn defines the values of φ at time instance
tn while φn+1 at the time instance tn + ∆t. For better
accuracy could the Euler scheme be changed to a
total variation diminishing Runge-Kutta method at the
cost more computations.

The spatial discretization relies strongly on what
PDE is used and thus will two fundamental types
be used, hyperbolic and parabolic. For hyperbolic
advection two versions of equation 3 are used:

∂φ

∂t
= −V · ∇φ (6a)

= −F |∇φ| (6b)

Equation 6a describes advecting the interface in
a vector field V and equation 6b the direction of
the surface normal. An equation similar to this can
be used in erosion and dilation. Since the sample
points in front of current position have not been
ẗouchedı̈t can be deduced that only sample points
behind (or up-wind to) the current position should
be used in the discretization. This results ina finite
difference approximation:

∂φ

∂x
≈

φ+
x =

(
φi+1,j,k − φi,j,k

)
/∆x if Vx < 0

φ−x =
(

φi,j,k − φi−1,j,k

)
/∆x if Vx > 0

(7)
Equation 6b does not know the direction of the

flow, to deduce this can Godunov’s method to eval-

uate partial derivatives be used. This result in a first
order accurate approximation:

(
∂φ

∂x

)2
≈
{

max
[
max(φ−x , 0)2, min(φ+

x , 0)2] F > 0
max

[
min(φ−x , 0)2, max(φ+

x , 0)2] F < 0
(8)

Parabolic type is often used to smooth deforma-
tions and can be stated as:

∂φ

∂t
= ακ |∇φ| (9)

where α is a scaling parameter and κ is curvature.
A big difference with this equation to the hyperbolic
representation is that it has no direction. A second-
order accurate central difference scheme for space
is required:

∂φ

∂x
≈ φ±x =

φi+1,j,k − φi−1,j,k

2∆x
(10)

And second order central difference scheme:

∂2φ

∂2x
≈

φi+1,j,k − 2φi,j,k + φi−1,j,k

∆x2 (11a)

∂2φ

∂x∂y
≈

φi+1,j+1,k − φi+1,j−1,k + φi−1,j−1,k − φi−1,j+1,k

4∆x∆y
(11b)

The stability constraints required in the hyper-
bolic type for the time step ∆t is not necessary here
as information travel at inifinite speed

As previously mentioned, φ needs to be contin-
uous with well defined gratidents in order for use
of equation 3. However with the discretization this
constraint can be relaxed. The gradients of φ /textit-
can be discontinuous, although the rate-of-change of
φ must be bounded by the finite Lipschitz constant
Cgeq0. To assure stability, C ≈ 1, meaning that φ
has to satisfy the Eikonal equation:

|∇φ| = 1 (12)
To ensure that |∇φ| does not drift away from 1,

a process called reinitialization is called frequently
which ensures a steady state by

∂φ

∂t
= S(φ)(1− |∇φ|) (13)
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Figure 1: A broken model with submeshes around
the main geometry

where S(φ) is the sign of φ, with a smooth numer-
ical approximation.

3 Results

The first task was to implement the differential equa-
tions with both a forward, backward and central
difference scheme using the equations given in 7
and 10. The second derivative scheme was also im-
plemented using equation 11. This was done with
respect to all three axises.

These equations were later used when evaluating
the advection a vector field has on the mesh. If the
vector field stepped backwards in the x − axis, it
means that the backward-scheme will be used to
calculate the gradients first value. By evaluating
each variable of the vector field individually an ap-
propriate differing scheme can be selected.

If a deformation of the mesh along the surface nor-
mal is desired will equation 6b be used. To evaluate
the sign of the second derivative was the Godunov

Figure 2: Dilating to close the gaps between the
submodels

scheme used.
Figure 1, 2 and 3 shows how small submeshes of

the model can be removed by first using dilation and
the erosion. The technique is often called closing.
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Figure 3: Call on erode to smooth out the surface,
rendering the result without the previous floating
spheres around the model.
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