
Fluid Simulations - Lab 6 TNM079

Jonathan Bosson
jonbo665@student.liu.se

Sunday 11th September, 2016

Abstract

The paper discusses how to simulate smoke, wa-
ter, and fire with the Navier-Stokes equations in a
meshgrid data structure. This method can be used
in special effects movies or video games to portrait
fluid like models in an effective and quick way.

1 Introduction

This lab goes through the details how to solve the
Navier-Stokes equations using Stable Fields. Al-
though this lab only focuses on how to effectively
simulate water can effects such as wind or fire eas-
ily be achieved using the same techniques. Smoke
requires a diffusion term which is ignored in this
lab, however its’ poisson equation is very similar to
the projection step used in this implementation.

2 Background

The Navier-Stokes equations are fairly wellknown
and it describes how a velocity field, V , in a fluid
changes over time. The equations for incompress-
ible flow are:

∂V

∂t
= F + ν∇2V − (V · ∇)V − ∇p

ρ
(1)

∇ · V = 0, (2)

where V is the velocity field, F is the external
force term, ρ the constant density and p the pressure
field.

By using a technique called operator splitting it is
possible to solve the Navier-Stokes equations one
term at a time. In essence, first can the temporary
field V1 be calculated from V0 by solving for the
self-advection term, (V · ∇)V . After that calculate
V2 from V1 by adding the surface force, F and com-
pute V3 from V2 by solving for the diffusion term,
ν∇2V . Lastly calculate V∆t from V3 by projecting
the velocity field onto its divergence free part, this
includes the terms [∇p

ρ ] and ∇ · V .
The viscous term is ignored in the lab since it

aims to visualise water, which has a very low viscos-
ity. Navier-Stokes equations without the viscosity
term is called the Euler equations and can be solved
through following scheme:

V0
(V ·∇)V
→ V1

F
→ V2

∇p
ρ ,∇·V
→ V∆t.

The self-advection is described in Navier-Stokes
equations as −(V · ∇)V . It is clear that this term
is non-linear, which is an important property that
allows Navier-Stokes equations to model vortices
or swirls in the fluid. The self-advection can be seen
as moving the velocity field with itself and thus
will straightfoward methods with pure advection to
solve it cause instabilities. This is true if V wouldn’t
have been time dependant, but since it is can the
self-advection be determined by solving following
partial differential equation:

∂V1

∂t
= − (V0 · ∇)V0 (3)

This method calculates V1 by following the
streamlines of V0 and thus is very dependant on

1



interpolation. Different interpolation methods will
render vastly different results, in the lab a simple
trilinear interpolation was used which is efficient
and easy to implement but generates numerical vis-
cosity.

The external force, F , is equal to the time deriva-
tive of V2, and can thus be solved through a straight-
forward approach with Euler time integration.

V2 − V1

∆t
= F ⇒ (4)

V2 = V1 + ∆t ·F (5)

The last step is to prevent the fluid from com-
pressing by enforcing ∇ · V = 0. A divergence free
vector field defines a field where nothing is added or
removed, and thus the pressure (as well as density)
is constant which is equivalent to incompressibility.
This is upheld by applying the projection step to
V2 using Helmhotz-Hodge decomposition which states
that each vector field V can be divided into a curl
free part Vc f and a divergence free part Vd f .

V2 = Vd f + Vc f . (6)

V∆t is defined as divergence free, and thus set to
equal Vd f . The gradient of a scalar field, q, is always
curl free which allows us to rewrite the equation to:

V∆t = V2 −∇q. (7)

The divergence operator ∇· is used to estimate
value of q, resulting in the cancellation of the diver-
gence free part V∆t in equation 6.

∇ · V2 =���
�:0∇ · V∆t +∇ · ∇q⇒

∇ · V2 = ∇2q. (8)

The∇q can be seen as the pressure field ∇p
ρ . Since

V2 is known can q be calculated through a poisson
equation. The divergence operator is approximated
through a numerical central differencing scheme:

∇ · Vi,j,k =
ui+1,j,k−ui−1,j,k

2∆x +
vi,j+1,k−vi,j−1,k

2∆y +
wi,j,k+1−wi,j,k−1

2∆z .

(9)

where u, v and w are the x, y and z components of
the vectors in the vector field V . Computing ∇2q
would result in a rather complex equation. However
since a uniform grid is used along all axises, ∆x =
∆y = ∆z, can it be reduced to:

∇2qi,j,k =
1

∆x2

[
1 1 1 −6 1 1 1

]


qi+1,j,k
qi−1,j,k
qi,j+1,k

qi,j,k
qi,j−1,k
qi,j,k+1
qi,j,k−1


(10)

or in a more abstract description as

Ax = b (11)

where A = ∇2, x = q and b = ∇ · V2. The equa-
tion is solved by finding the Poisson inverse matrix of
A, or more efficiently by using an iterative parallel
algorithm.

Two boundary conditions are important to con-
sider when solving the poisson equation 8. These
constraints are used such that the PDE rules out so-
lutions to the equation that are not allowed, or in
this case to allow fluid to interact with objects in the
world. The first condition is the Dirichlet boundary
which states that there can be no flow, in or out,
of the boundary surface to which n is normal. In
essence it forbids the fluid to flow into solid objects.

V ·n = 0 (12)

The second boundary is the Neumann boundary
condition:

∂V

∂n
= 0 (13)

This equation forbids any flow along the normal
n of a boundary (solid) surface and is a required
compliment to equation 12.

2



3 Results

The implementation of this lab was divided into
three steps. The first step was to implement the
external forces function, which went through every
voxel with fluid and set the new velocity value at
(i, j, k) according to equation 4.

Second step was to enforce the Dirichlet boundary
condition such that there could not be any flow into
a solid surface. In essence the function goes through
all voxels with fluid and checks if it has any solid
voxel neighbours. If so, the part of the velocity field
in that direction was set to 0. For example:

if φi−1,j,k ∈ solid and Vi,j,k.x < 0 then
Vi,j,k.x ← 0

end if
Last step was to implement the projection func-

tion, which solves the inverse poisson matrix A−1

discussed in equation 11. The divergence of the
velocity field at position (i, j, k) is first calculated
through central differencing. To maintain the Neu-
mann boundary condition are the neighbouring vox-
els checked to see if they are solid. This is since
the ∇2qi,j,k can be described in a discrete laplacian
frame. The result is a translated matrix containing
seven entries. Each entry corresponds to a specific
neighbour to voxel (i, j, k) and is equal to 1 if the
neighbour is solid and 0 if not. The middle entry
is equal to the negative sum of all neighbours. All
entries in the matrix is then divided by 1

∆x2 . For
example:

1
∆x2

[
1 1 1 −5 1 0 1

]
(14)

Lastly the new velocity field at voxel (i, j, k) is cal-
culated like equation 8 by using central differencing
on the approximated q in the projection step and
subtract it from the original velocity.

The result is an efficient but rough solver for fluid
simulation, which can be seen in figures 1 to 4.

References

[1] M. E. Dieckmann, Lecture Slides for TNM079,
Lecture 8, 2016.

Figure 1: Snapshot of fluid simulation

Figure 2: Snapshot of fluid simulation

This report aims for grade 3.

3



Figure 3: Snapshot of fluid simulation

Figure 4: Snapshot of fluid simulation

4


