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TNCG13 Linköping University

Tuesday 20th December, 2016

Abstract

This report discusses a new novel approach by
Moon et al. [2] to make the raycasting rendering
algorithm more effective by reducing noise and
computation cost. This is done by introducing
an adaptive sampling rate and a unique recon-
struction method through local Taylor polyno-
mial functions. Since no analytical solution can
be used, the image reconstruction uses estima-
tions and statistical analysis to find the minimal
error around bias, variance and polynomial or-
der. An energy-preserving outlier removal tech-
nique is also introduced in order to address
glossy surfaces, a wellknown issue the usual
Monte-Carlo method handles poorly. Moon et
al. [2] further demonstrates that this approach
outmatches state-of-the-art methods in both ef-
ficiency and image quality.

1 Introduction

The Monte-Carlo raycasting algorithm (MC)
has been a wellknown and potent method to
render photorealistic 3D scenery since 1986
when Kajiya proposed the rendering equa-
tion [1]. The method is popular since it is ca-
pable to render any desired effect. Its biggest

downfall however is the computation cost, as
the method can require more than 10000 casted
rays per pixel to render a converged image.
This is especially apparent in high dimensional
applications to simulate global illumination.

There are two distinct approaches to solve the
dimensionality issue: high-dimensional adap-
tive methods and image space adaptive meth-
ods, both of which are built upon dynamic sam-
pling in place of a uniform one. Image space
adaptive methods, such as the one proposed by
Overbeck et al. [3], finds the variance of the
MC in 2D image space and then minimizes
the error noise with the help of an image fil-
ter and estimated errors. Even though differ-
ent filters can be used, the common behaviour
is to minimize the numerical error by control-
ling filtering bandwidths at each pixel. The
method presented by Overbeck et al. has since
quickly gained attention due to its ease in im-
plementation and generality compared to its
high-dimensional adaptive counterpart.

Moon et al. [2] extends this method by chang-
ing the polynomial function locally in order to
control the optimal filtering bandwithds per
pixel, which minimizes the mean squared error
(MSE). This can essentially be seen as a variance
vs. bias tradeoff, under- or over-blurring the
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image. Using this approach instead of the pre-
viously mentioned bandwidth adaptation filter-
ing step it surpasses all other currently avail-
able state-of-the-art rendering methods.

2 Adaptive Polynomial Recon-
struction

The dynamic sampling of rays per pixel utilizes
the fact that rendered images have a heteroge-
neous noise to guide areas with low sampling
density. The adaptive reconstruction is to con-
trol the smoothing in an area by examining MC
noise to preserve high-frequency edges.

The reconstruction can be seen as an opti-
mization problem where the goal is to compute
the true intensity µ(i) of a pixel. With an in-
put image function y(i), where i is a position in
a 2D image, consider the following statistical
model:

y(i) = µ(i) + ε(i) (1)

As mentioned µ(i) is the true intensity of the
pixel, a value that can only be achieved with
an analytical solution or an infinite amount of
samples. ε(i) in turns is the MC noise seen as
variance.

Since its a statistical model can µ(i) be bro-
ken down into two separate parts, µ(i) ≡
g( fi) + p(i). p(i) is a 2D function that takes
the pixel position as input and g( fi) is a lin-
ear function that takes a high-dimensional vec-
tor fi containing information such as normals
(3D), textures (3D), depths (1D), and visibility
(1D). All of which can handily be calculated at
the intersection points during rendering. The
use of this decomposition is that the unknown
µ(i) can be approximated in glossy areas by

the residual µ(i)− g( fi) using p(i) and in other
areas using the correlation between rendering-
specific features fi and µ(i). Moon et al. [2]
locally approximates µ(i) using Taylor polyno-
mials:

µ(i) ≈ ∇g( fc)( fi − fc)T + p(c) + ∑1≤a≤k
∇a p(c)

a! ((i− c)a)T

(2)
∇ is the notation for differentation and k the

Taylor polynomial order that is used. After a
few interstages, Moon et al. [2] arrives at equa-
tion 3 to describe the least-squares optimization
estimated within a local window Ωc.

ŷ(i) = ∑
j∈Ωi

K j
h(i)ŷ

j
k(i)/ ∑

j∈Ωi

K j
h(i) (3)

K j
h is a gaussian kernel function that weights

pixel i over the filtering bandwidth h, which
controls the bias-variance tradeoff of the recon-
struction. ŷj

k(i) is the reconstruction result of
pixel i. Both of these are computed from the
center pixel j. This chunk wise reconstruction
is particularly favorable as Taylor polynomi-
als can accomodate to large regions Ωc well by
simply increasing the polynomial order k.

Since the reconstruction is defined chunk
wise is the same required for the optimization
goal. Equation 4 defines the reconstruction er-
ror of a polynomial at center pixel c as the L2
error.

εc(k) ≡
1

∑i∈Ωc
Kh(i)

∑
i∈Ωc

Kh(i)(ŷk(i)− µ(i))2

(4)
The optimal pylonomial order kopt giving the

minimal error εc(kopt) can thus be computed,
although not directly as the L2 error uses the
unknown µ(i) term. Instead, the recontruction
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bias-variance is mathematically expressed in
section 2.1, an estimation process for the error
terms presented in section 2.2 and removal of
outliers while preserving energy explained in
section 2.3.

2.1 Bias and Variance Expression

To estimate the actual error (ŷk(i) − µ(i))2 in
equation 4, it is first broken down into bias and
variance segments by taking the mathematical
expectation E. The bias part is approximated as:

E(ŷk(i)− µ(i)) ≈ ∑
i∈Ωc

(Hij(k))µ(j)− µ(i) (5)

where Hij(k) is the element at position (i, j)
in a matrix that determines a projection from
the input values y to projected values ŷk. This
term is further explained by Moon et al. in a
previous publication [4]. After the bias term
has been applied is the input image seen as an
unbiased rendering result. The variance can be
defined with σ2(y(j)) as the variance with pixel
intensity y(j) as:

σ2(ŷk(i)) ≈ ∑
i∈Ωc

(Hij(k))2σ2(y(j)) (6)

kopt can thus be defined as equation 7 using
the new decomposition, however it still con-
tains the unknown terms µ(i) in the bias and
σ2in the variance computations.

kopt = argmin
k

∑i∈Ωc
Kh(i)((E(ŷk(i)− µ(i)))2 + σ2(ŷk(i)))

(7)

2.2 Multi-Stage Error Estimation

To solve this equation 7 is an estimation process
used to estimate the unknown terms. One ap-
proach to solve equation 5 and 6 is to use the

MC input intensities y(i) and y(j) and sample
variance s2(y(j)), however this method leads to
the polynomial order selection to be ambiguous.
Instead multi-state error estimation is proposed
that iteratively guesses µ(i), µ(j) and σ2(y(j)).
The bias part is computed as follows:

Et(ŷk(i)− µ(i)) ≈ ∑
j∈Ωc

Hij(k)ŷt−1(j)− ŷt(i)

(8)
In the first iteration t = 1, ŷ0(i) and ŷ0(j) is

set as the previously suggested MC input val-
ues y(i) and y(j). In the second, and future, it-
erations the result from the reconstruction ŷ1(i)
and ŷ1(j) are used in place of the unknown µ(i)
and µ(j). This gives an error much lower than
the MC input intensities and hence also the esti-
mation errors |µ(j)− ŷ1(j)| and |µ(i)− ŷ1(i)| is
reduced for each repetition. The variance part
is computed in a very similar way, shown in
equation 9.

σ2(ŷk(i)) ≈ ∑
j∈Ωc

(Hij(k))2σ̂2
t−1(y(j)) (9)

For the first iteration the sample variance
s2(y(j)) is used and later iterations use the
guessed variance σ2

t−1(y(j) from previous itera-
tion.

Moon et al. [2] shows that the error, and thus
noise in the rendered image, is reduced with
each iteration after the first one. However, since
each iteration requires a significant recalcula-
tion for the optimal polynomial order for the
variance term and the improvement between
two and three iterations is negligible, is two
recommended for a balance between efficiency
and quality.
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Figure 1: Image taken from Moon et al. [2] dis-
playing the energy-preservation method. (a)
is a uniformly generated image and (b) its in-
set. The result without the outlier removal
method (c) exhibit artifacts due to the diffi-
culty to distribute the excessive energy. (d)
shows removes outliers but is not energy pre-
serving carry a visible energy loss. The pre-
sented energy-preserving outlier removal tech-
nique (e) resolves both problems (c) and (d)
had.

2.3 Energy-preserving Outlier Removal

Glossy surfaces causing outliers with exagger-
ated intensities in MC renderers is a wellknown
issue. However, if the outliers are removed be-
fore rendering it causes noticable energy loss in
the resulting image.

Moon et al. [2] proposes an extension to the
removal of outliers in the pre-process with an
energy restoration method in the post-process.
During the removal of the outliers the energy
loss, ie. difference eo between the outliers inten-
sity and the median intensity in that area (that
the outlier pixel o is replaced with), is saved.
After the reconstruction can the lost energy be

Figure 2: Image taken from Moon et al. [2]
showing results of different polynomials or-
ders under two sample counts. Polynomials
of higher order (k ≥ 4) are more noisy but
preserve the discontinuous edge better. This
tradeoff drives the discussed adaptive control
between the bias and variance of the reconstruc-
tion result.

restored to the output ŷ(i) but over the area Ωo
around outlier pixel o as:

ŷ(i) = ŷ(i) + ρoŷ(i) (10)

where ρo > 0 is a compensation parameter
calculated from equation 11 and responsible for
controlling the distribution of the energy loss
from pixel o.

eo = ∑
i∈Ωo

ρoŷ(i) (11)

3 Adaptive Sampling Rate

To send in a dynamic set of rays per pixel can
an iterative adaptive method be used that was
proposed by Overbeck et al. [3], where the goal
is to add additional rays on pixels with high
errors. In this method, a uniform pass is first
computed with a very low number of samples
(4 or 8). The reconstruction error ε̂c(k̂opt) us-
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ing the presented bias and variance estimations.
Since the the reconstruction equation (3) uses
a local average with the K-function, should the
error ε̂i of the output ŷ(i) at pixel i be combined
with the kernel funcion K as well. With the es-
timated error of each pixel known, additional
samples are added on pixels with the maximum
MSE reduction rate ∆(ε̂i) until a defined sam-
ple budget has been met.

4 Discussion and Future Work

Moon et al. [2] takes one step further from pre-
vious image space adaptive methods by adding
taylor polynomials in the reconstruction and
estimation stages. It also introduces a block-
wise optimization process which improves the
optimal order selection to become more robust.
This effectively means its more capable of prop-
erly denoising very noisy input images, mostly
visible in glossy scenes with high numerical er-
rors where other methods would over-blurr the
image.

However, in higher dimensions, such as in-
cluding time and second bounces, could adap-
tively controlling other spaces be important. Im-
age space methods, this one included, uses a
random sampling which can cause issues in
for example moving highlights. The estimation
process is limited to the quality of the input
image. Since even extremely highly sampled
images can render noisy edges is it a significant
challenge to reconstruct the input image appro-
priately when it does not come with enough
information. Moon et al. [2] states that future
work revolves around increasing the sampling
dimension as well as minimizing accounting
for the dimensionality issue.
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